1. 基本定义
在线性规划中,一个对称的 n×n 的实值矩阵 M,如果满足对于任意的非零列向量 z,都有 zTMz>0.
更一般地,对于 n×n 的 Hermitian 矩阵(原矩阵=共轭转置,aij=a¯ji,或者 A=AT¯¯¯¯¯),对于任何的非零列向量 z,z⋆Mz>0;
2. 定理和推论
对称阵 A 为正定的充分必要条件是:
- A 的特征值全为正;
- A 的各阶主子式都为正;
对称阵 A 为负定的充分必要条件是:奇数阶主子式为负,偶数阶主子式为正;
3. 正定的几何意义
设 f(x,y) 是二元正定二次型,则 f(x,y)=c (c 为大于 0 的常数)的图形是以
3. 简单举例
单位矩阵 I 是正定矩阵,
zTIz=∥z∥2对于任何实可逆矩阵,ATA 是正定的,因为对任何非零列向量 z,都有 zTATAz=∥Az∥2,可逆矩阵保证了 Az≠0;