博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
正定矩阵(definite matrix)
阅读量:5156 次
发布时间:2019-06-13

本文共 431 字,大约阅读时间需要 1 分钟。

1. 基本定义

在线性规划中,一个对称的 n×n实值矩阵 M,如果满足对于任意的非零列向量 z,都有 zTMz>0.

更一般地,对于 n×n 的 Hermitian 矩阵(原矩阵=共轭转置,aij=a¯ji,或者 A=AT¯¯¯¯¯),对于任何的非零列向量 zzMz>0

2. 定理和推论

  • 对称阵 A 为正定的充分必要条件是:

    • A 的特征值全为正;
    • A 的各阶主子式都为正;
  • 对称阵 A 为负定的充分必要条件是:奇数阶主子式为负,偶数阶主子式为正;

3. 正定的几何意义

f(x,y)二元正定二次型,则 f(x,y)=cc 为大于 0 的常数)的图形是以

3. 简单举例

  • 单位矩阵 I 是正定矩阵,

    zTIz=z2

  • 对于任何实可逆矩阵,ATA 是正定的,因为对任何非零列向量 z,都有 zTATAz=Az2,可逆矩阵保证了 Az0

转载于:https://www.cnblogs.com/mtcnn/p/9422876.html

你可能感兴趣的文章
【UVA】434-Matty's Blocks
查看>>
Android开发技术周报 Issue#80
查看>>
hadoop2.2.0+hive-0.10.0完全分布式安装方法
查看>>
django知识点总结
查看>>
C++ STL stack、queue和vector的使用
查看>>
使用Reporting Services时遇到的小问题
查看>>
约瑟夫问题
查看>>
Arduino 报错总结
查看>>
树莓派Android Things物联网开发:树莓派GPIO引脚图
查看>>
矩阵快速幂---BestCoder Round#8 1002
查看>>
js兼容公用方法
查看>>
如何将应用完美迁移至Android P版本
查看>>
【转】清空mysql一个库中的所有表的数据
查看>>
基于wxPython的python代码统计工具
查看>>
淘宝JAVA中间件Diamond详解(一)---简介&快速使用
查看>>
Hadoop HBase概念学习系列之HBase里的宽表设计概念(表设计)(二十七)
查看>>
Kettle学习系列之Kettle能做什么?(三)
查看>>
Day03:Selenium,BeautifulSoup4
查看>>
awk变量
查看>>
mysql_对于DQL 的简单举例
查看>>